
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Optimizing Minecraft Speedruns with Pathfinding

Algorithm: A Heuristic Approach to Route Planning

Daniel Pedrosa Wu - 13523099

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: danielpedrosawu5705@gmail.com , 13523099@std.stei.itb.ac.id

Abstract— The competitive pursuit of Minecraft speedrunning

represents a complex, high-dimensional optimization challenge,

characterized by procedurally generated environments that demand

dynamic route planning under severe time constraints. This paper

investigates the application of computational intelligence to address

this challenge. We propose a solution leveraging the A search

algorithm, a foundational technique in artificial intelligence for

graph traversal, to automate and optimize navigational

pathfinding within Minecraft's three-dimensional voxel world. A

software artifact, implemented as a mod for the Minecraft Fabric

loader, serves as a proof-of-concept. This tool utilizes a Euclidean

distance heuristic to calculate and visualize geometrically optimal

paths between two points in real-time. The performance of this

system is evaluated across a series of controlled in-game scenarios,

measuring metrics such as calculation time, computational load,

and path quality. The results demonstrate the viability of using

heuristic-based search algorithms for route optimization in this

domain. However, the analysis also highlights the inherent

limitations of a purely geometric heuristic in the context of

speedrunning, where temporal efficiency is paramount. This work

establishes a baseline for computational assistance in Minecraft

speedrunning and identifies critical areas for future research,

including the development of more sophisticated, context-aware

cost functions and dynamic re-planning strategies.

Keywords—Minecraft, speedrun, sprint-jump, A*, heuristic

I. INTRODUCTION

Minecraft is a voxel-based sandbox game developed by
Mojang Studios, has transcended its humble origins into
becoming a global phenomenon. Initially created by Swedish
video game programmer Markus “Notch” Persson and later sold
to Microsoft in a multi-billion dollar deal, Minecraft has since
became the best-selling video game of all time. The core
gameplay, which revolves around the creation and exploration
within its block-based platform serves as a platform for players
to express their creativities and enjoy the game however they
like.

One such activity that has been gaining popularity in the last
couple of years is speedrunning. Speedrunning is the practice of
completing a game, or a specific section in the shortest time
possible, following the rules established for a specific category.
In the context of Minecract, the most popular category is the
“Any% Random Seed Glitchless (Any% RSG)” category, where
the player’s objective is to defeat the final boss of the game, the

Ender Dragon, starting from a new randomly generated world
each run without the usage of game-breaking exploits.

Any% RSG speedruns are fundamentally different from
other speedrunning categories or even other games. Unlike
games with fixed level designs, the random nature of this
category makes the run fundamentally unpredictable. This
inherent randomness means that speedrunners cannot rely on
memorizing a single, static route. Instead, speedrunners must
adapt on the fly, relying on dynamic decision-making and rapid
environmental assessment to navigate the complex, three-
dimensional space.

However, the sheer scale and complexity of a Minecraft
world presents a search space that is too vast for exhaustive
human analysis. This means that the route a human player takes
will not always be the optimal path. This makes the problem of
route planning an ideal subject for computational augmentation.
By modelling the Minecraft world as a graph and applying
certain pathfinding algorithms, it is possible to mathematically
calculate optimal paths between different points, potentially
exceeding the efficiency of routes derived from human intuition.

This paper aims to design, implement and evaluate an
algorithm capable of computing the geometrically shortest path
within a complex, three-dimensional voxel world of Minecraft.
To serve as a proof-of-concept, a mod was developed for the
Fabric Mod Loader. This mod leverages the A* search
algorithm, to calculate the optimal route between two
coordinates specified by the user. The pathfinding process
operates under the constraint that the path taken will result in the
player taking minimal damage and that it assumes the player
performs optimal movements. This path is then rendered
visually in the Minecraft world through the usage of the game
particle system. This paper provides a comprehensive account
of this system, from its theoretical underpinnings to its practical
implementation.

mailto:danielpedrosawu5705@gmail.com
mailto:13523099@std.stei.itb.ac.id

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

II. THEORETICAL FOUNDATION

A. Minecraft as A Sandbox Game

Fig. 2.1. Minecraft

Source: https://minecraft.fandom.com/wiki/Minecraft

Minecraft is known as a “sandbox” game, a genre defined by
the freedom it affords players to interact with the game how they
see fit. This genre is characterized by the lack of a predetermined
narrative or a linear set of objectives. The core gameplay loop of
Minecraft consists of players exploring the procedurally
generated world, gathering resources by breaking blocks or
killing mobs and then using those resources to craft items and
build structures.

There are two primary gamemodes in Minecraft which are
Survival mode and Creative mode. In Survival mode, players
must manage their health and hunger bars, gather resources
manually and defend themselves against hostile creatures. In
constrast, Creative mode removes all survival aspect. The
players are immortal, have access to an unlimited supply of all
items and gained the ability to fly, allowing them to focus purely
on their creative expression.

The true driving force behind Minecraft’s popularity and
longetivity is its vast and creative community. This global
community of players extends the game beyond its original
scope by creating a near-limitless amount of user-generated
content. Such examples are mods which allows modification to
the game’s code, maps which offers curated adventure or puzzle
for other players to play. Thousands of multiplayer servers also
create unique social network of players, cementing Minecraft as
not just a game, but a platform whose limits are defined only by
the collective imagination of its community.

B. Beating Minecraft

While Minecraft is renowned for its open-ended sandbox
nature, allowing players to set their own goals, it does feature an
implicit main quest line that provides a definitive "end" to the
game. This objective-driven path culminates in a confrontation
with the game's final boss, the Ender Dragon. Completing this
goal requires players to navigate through the game's three
dimensions—the Overworld, the Nether, and The End—and
accomplish a series of specific tasks, which are:

1) Entering The Nether

Fig. 2.2. Nether Portal

Source: https://minecraft.wiki/w/Nether_portal

 The player’s journey begins in the Overworld. The player
must gather the resources required to enter the Nether. The
Nether is a hell-like dimension filled with dangerous creatures,
imposing structures and unique resources. To enter the nether,
the player must activate a Nether Portal. The portal is made by
constructing an obsidian border around a rectangular area of
empty space with a minimum internal dimension of 2 blocks
wide by 3 blocks tall. This portal can then be activated by
lighting the obsidian with a Flint and Steel.

2) Acquiring Key Items in the Nether

Fig. 2.3. Blaze and Enderman

Source: https://minecraft.wiki/w/Blaze dan

https://minecraft.wiki/w/Enderman

 It was mentioned beforehand that the Nether contains
dangerous creatures and unique resources. One such mob is
known as the Blaze, which drops an item called a Blaze Rod.
Once entering the nether, the player must locate a specific
structure known as a Nether Fortress. This structure is important
because it is the only known place where the Blaze spawns.
These rods are then used to craft Blaze Powder, which are part
of the recipe to craft the Eye of Ender. Beside the Blaze Powder,
the player also needs the Ender Pearl which are dropped by
Enderman, a mob that spawns in every dimension.

3) Locating The Stronghold

Fig. 2.4. Eye of Ender’s Recipe

Source: https://minecraft.wiki/w/Eye_of_Ender

https://minecraft.fandom.com/wiki/Minecraft
https://minecraft.wiki/w/Nether_portal
https://minecraft.wiki/w/Blaze
https://minecraft.wiki/w/Enderman
https://minecraft.wiki/w/Eye_of_Ender

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

 The Eye of Ender can then be thrown in the Overworld.
When thrown, these eyes will fly towards the location of a
hidden, underground structure known as the Stronghold. It is
also important to note that travelling one block in the Nether is
equivalent to travelling eight blocks in the Overworld which can
vastly help with traversal. Once in the Stronghold, the player
will have to find a specific chamber known as the Portal Room.

4) Activating the End Portal

Fig. 2.5. End Portal

Source: https://minecraft.wiki/w/End_portal

 Once located, the portal room will contains End Portal Frame
blocks which need to be filled by Eye of Ender to lit up. In total,
there are twelve End Portal Frame and each portal room
generates with a random amount of portal frames already filled
in. Once all twelve are filled, the portal will then lit up and the
player can enter The End.

5) Fighting the Dragon

Fig. 2.6. The Ender Dragon

Source: https://minecraft.wiki/w/Ender_Dragon

 Upon entering The End, the player faces the Ender Dragon.
In the arena, there are several obsidian pillars, each housing an
End Crystal. These crystal allows the dragon to heal itself. Once
the Ender Dragon is defeated, a portal that leads to the
Overworld will open up, upon which the player can enter to
return to the Overworld.

C. The Minecraft Environment as a Search Space

Every Minecraft world is generated using a pseudo-random
algorithm determined by a numerical “seed”. This seed is a 64-
bit integer which dictates the entire structure of the world. This
process is deterministic which means using the same seed in the
same game version will always produce the exact same world.
The world is composed of chunks which are 16 × 16 columns
extending through the vertical height of the map. Chunks are
generated on-the-fly, loading a small portion of the world to the
players at any given time. This approach is used to create the
illusion of an infinite world while keeping memory usage to a
manageable level.

The Minecraft world is a discrete, three-dimensional grid
composed of blocks. Every element in the world occupies a
specific coordinate (𝑥, 𝑦, 𝑧) in this grid. This discrete

representation is key to modelling the Minecraft environment for
pathfinding. The world can be abstracted into a massive graph
where each block that the player can stand on represents a node,
whilst movement between adjancent, traversable blocks
represents an edge. The cost of traversing the edges of this graph
is determined by Minecraft’s movement physics.

In Minecraft, there are three primary modes of ground
movement: walking, sprinting and sneaking. Each has a distinct
base value applied to the player’s velocity each game tick (every
0.05 seconds). Without external modifiers, the default walking
speed is 4.317 blocks/second [3]. While sprinting, the player
moves at a speed of 5.612 blocks/second [3] and while sneaking,
the player moves at a speed of 1.3 blocks/second. This value can
then modified by several factors, such as environmental factors
(i.e. being airborne, being in water, taking damage, etc), status
effects (i.e. buffs/debuffs) or the physical properties of the
blocks. For example, sprinting while jumping yields an average
speed of 7.127 blocks/second [3].

The game’s physics model uses an absolute coordinate
position which means that the player position and motion are
defined relative to a fixed world origin, located at the coordinate
(0,0) on the horizontal XZ-plane. The three different movement
modes and their associated speed can directly translate into
variable edge weights in the graph. This means a sprint-jump—
the act of jumping while sprinting—would have a lower time
cost compared to walking or even sneaking the same distance.

D. Minecraft Any% Random Seed Glitchless Speedrunning

A Minecraft Any% RSG speedrun has a single objective:
defeating the Ender Dragon within the shortest time possible,
without the usage of game-breaking exploits. Although the game
has evolved overtime, the key stages of an Any% RSG speedrun
have largely remained the same, which are the Overworld Setup,
the Nether Entry, the Nether Phase, the Stronghold Location and
finally The End. While these foundational stages are consistent,
the strategies within them have been highly optimized in the
modern era of speedrunning. A typical run in the modern version
of the game (1.16+) progresses through each of the stages as
follows:

1) Overworld Setup
 The run begins with gathering basic resources needed to craft
essential tools. Since each run is on a different world, there are
several ways that a run can begin. The immediate goal is often
to locate a structure that provides a significant resource
advantage, such as a village, a shipwreck, a buried treasure or a
ruined portal.

2) Nether Entry
 The player must then enter the Nether dimension. To do this,
they must construct a Nether portal. To save time, speedrunners
rarely mine obsidians directly. Instead, they use a bucket of
water and a pocket of lava to directly create obsidians. This can
be done on a lava pool or a lava ravine underwater.
Alternatively, the player can also complete a ruined portal.

3) The Nether Traversal
 This is the most critical stage of the run. There are two key
resources from two different structures that the player must
gather, which are the Ender Pearls and the Blaze Rods. Although

https://minecraft.wiki/w/End_portal
https://minecraft.wiki/w/Ender_Dragon

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

they are dropped from Endermen, the most consistent and fastest
way to obtain them is through bartering gold with Piglins. Each
barter takes about 8 seconds, however more than one Piglin can
trade at the same time. A mass amount of Piglins are located in
Bastion Remnants. These structures contain golds that can be
used to trade with the Piglins.

 The Piglins can also give other useful resources such as
strings to craft Beds (explosives while in the Nether or The End),
obsidians (to build portals) and potions. The next structure is the
Nether Fortress. This structure contains the Blaze which drops
the Blaze Rod. Usually a runner will have already acquired a
Fire Resistance Potion which makes them immune to the Blaze’s
attack while bartering with the Piglins.

4) Stronghold Location
 After acquiring a sufficient amount of Blaze Rods and Ender
Pearls, the player can then return to the Overworld to locate the
Stronghold. By throwing the Eye of Ender which can be crafted
using the resources gathered, the player can know the direction
of the Stronghold. Since travelling in the Nether is 8 times faster
than in the Overworld, the player can predict where the
Stronghold will be and travel to the predicted coordinate from
the Nether. By constructing a portal there, the player can then
end up inside the Stronghold.

5) The End
 Once in the Stronghold, the player must locate the portal
room, activate the portal with the Eyes of Ender and enter The
End dimension. The final challenge is to beat the Ender Dragon.
Instead of using traditional weaponry such as swords or bows,
speedrunners opt to use beds to kill the dragon as they explode
when used in the Nether or The End.

E. The A* Search Algorithm for 3D Route Planning

1) Formal Definitions
As presented beforehand, a lot of travelling is involved in

Minecraft speedrunning. Finding the most efficient path
between two different points is the problem that this paper is
trying to solve. The A* search algorithm is an informed, best-
first search algorithm that operates on a weighted graph to find
the path of least cost starting from the start node to the goal node
[2]. At each step, it will evaluate a node based on the evaluation
function 𝑓(𝑛):

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛).

where:

• 𝑔(𝑛) is the cost function, which represents the known
cost of the path from the start node to the current node
𝑛.

• ℎ(𝑛) is the heuristic function, which estimates the cost
of the cheapest path from the current node 𝑛 to the goal
node.

The A* algorithm maintains two lists of nodes which are:

• Open List: A priority queue containing all nodes that
have been discovered but not yet fully evaluated or
expanded. The nodes are ordered using their 𝑓(𝑛) value,
with the lowest-value node being the highest priority.

• Closed List: A set containing all nodes that have already
been evaluated to avoid redundant computation.

The algorithm works as follows:

• Initialize the Open List with the start node 𝑠 with
𝑔(𝑠) = 0 and 𝑓(𝑠) = ℎ(𝑠).

• Until the goal node is selected for evaluation or the
Open List is empty, the algorithm proceeds to
iteratively:

o Removes the node with the lowest 𝑓(𝑛) value
from the Open List and add it to the Closed
List.

o Evaluate its neighbors, check if they are in the
Closed List and update their costs if a better
path is found then adds them to the Open Set.

2) Heuristic Function
To guarantee that A* finds an optimal solution if it exists,

the heuristic function ℎ(𝑛) must have admissible. A heuristic
ℎ(𝑛) is admissible if it never overestimates the true cost of
getting from the current node 𝑛 to the goal node [2]. This means
that for every node 𝑛, the value of ℎ(𝑛) must be less than or
equal to the actual cost from the start node to the goal node.
Mathematically this can be expressed by:

∀𝑛 ∈ 𝑁, ℎ(𝑛) ≤ ℎ∗(𝑛)

By never overestimating, the heuristic ensures that A8
doesn’t prematurely discard a node that on the surface seems
inefficient. A* will always prioritize the path with the lowest
𝑓(𝑛), which means that 𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) needs to act as an
optimistic best-case scenario for a path going through 𝑛 to
ensure that a path doesn’t get prematurely discarded.

For a grid-based environment, several common heuristics
are:

• Manhattan Distance: Calculates the distance by
summing movements along grid axes. This heuristic is
optimal in an environment where only cardinal
movements are allowed.

• Chebyshev Distance: Measures the distance using the
maximum number of moves along any axis. This
heuristic is suitable in an environment where diagonal
moves have the same cost as cardinal moves.

• Euclidean Distance: Calculate the straight-line distance
between two points. This heuristic is admissible because
no path between two points can be shorter than the
straight line connecting them.

III. ALGORITHM DESIGN

While this project utilizes the A* algorithm, which is
standard and very well-known algorithm in pathfinding, its
novelty and effectiveness do not stem from the choice of
algorithm itself or the choice of heuristic. Rather, the
improvement comes from the graph representation, specifically
how nodes are generated.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

A. Euclidean Distance Heuristic

A heuristic provides the informed part in a best-first search
algorithm, like A*, guiding the algorithm efficiently toward the
goal. In this project, the three-dimensional Euclidean distance
was selected as the heuristic. The Euclidean distance is the
ordinary straight-line distance between two points in space. For
any two points 𝑝1 = (𝑥1, 𝑦1, 𝑧1) and 𝑝2 = (𝑥2, 𝑦2, 𝑧2), the
Euclidean distance 𝐷 is defined as:

𝐷(𝑝1, 𝑝2) = √(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2 + (𝑧2 − 𝑧1)
2

This selection of this heuristic was justified by two of its
properties, which are:

• Compatibility with 3D Free-Form Movement: Unlike
the simpler two-dimensional grid worlds where
movements are restricted to cardinal or diagonal steps,
player movements in Minecraft are not rigidly locked
into the voxel grid. As such, the Euclidean distance
heuristic is the most accurate choice in such an
environment because it measures the straight-line
distance between two points irrespective of grid
alignment.

• Guaranteed Admissibility: In order for an A* algorithm
to find optimal solutions, the heuristic must be
admissible. The Euclidean distance inherently satisfies
this condition. A admissible heuristic must never
overestimates the true cost. Since no possible path of
movement between two points in a 3D space can be
shorter than the direct line connecting them, this
heuristic will always provide a cost estimate that is less
than or equal to the actual cost.

B. Physics-Aware Graph Representation

The effectiveness of this algorithm comes not from the
choice of A*, but from the specific way the game world is
represented as a graph. A naive approach might define each
empty block as a node and each adjacent empty block as its
neighbors. The proposed design of this project abstracts the
node, not as merely an empty block but a valid standing position.
An edge between two nodes is not just a 1-block movement, but
a complete, time-optimal action that transport the player from
one standing position to another.

The ultimate goal of a speedrunner is to minimize time taken,
not just distance travelled. The fastest mode of on-foot travel is
known as sprint-jumping with an average speed of 7.127
blocks/second, almost 1.3x faster than sprinting normally. Due
to this, the player essentially almost always want to sprint-jump
to their destination. With sprint jumping, the player can move up
to 4 blocks in a single action.

However, sprint-jumping is not always the best choice. Due
to the fixed airtime of a jump, a jump covering less than three
blocks could actually prove slower than simply sprinting across
the same distance. Sprint-jumping also is not an action that is
always available. In spaces with low ceiling, players might not
have enough room that is necessary to perform a sprint-jump.

For any given node/state, the algorithm generates potential
neighbors/directly accessible state by simulating the game’s
physics for a range of possible actions:

1) Multi-Block Horizontal Jumps

Fig. 3.1. Possible States on the Same Level

Source: Author
The blocks that are reachable from the block (represented by

the red block) is shown in Figure 3.1. The algorithm projects the
full trajectory of a sprint-jump, creating single edges which can
span four blocks horizontally. This is represented by the green
blocks. This directly models the most efficient way to cross open
terrain. By jumping with less forward force, it is also possible to
reach other blocks which is represented in Figure 3.1 by the
yellow blocks.

2) Vertical Traversal

Fig. 3.2. Possible States on One Level Above

Source: Author
When jumping, a player can move up 1 block higher than

where they currently are. Due to the parabolic nature of jumping,
the amount of states reachable from the origin (red block) is less
than the amount of states reachable if they were at the same
level. In Figure 3.2, the green blocks represent the states that are
reachable from one block below, assuming there are no obstacles
in between. By lowering the forward force, the yellow blocks
are also reachable. Although ascending more than one block is
not possible under normal circumstances, descending a
considerable distance is more than doable. Falling more than

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

three blocks will result in fall damage. This means that jumping
while the targeted block is three blocks lower will results in fall
damage, thus not ideal.

3) Trajectory Validation
A potential landing spot is not considered a valid neighbor

unless the entire path to it is clear of obstructions. This is done
by:

• Parabolic Arc Simulation: The algorithm does not check
a simple straight line. It simulates the player's two-
block-high hitbox moving along the parabolic arc of the
jump. This accurately models how a player actually
moves through the air.

• Intermediate Collision Checks: During this simulation,
it queries intermediate coordinates along the arc to
ensure that all blocks within the player's hitbox are non-
solid (e.g., air). This check is what prevents the
algorithm from suggesting a path that clips through a
low-hanging tree leaf, the corner of a cliff, or a cave
ceiling.

By building a graph where each edge represents an efficient,
validated, real-world action, we transform the problem. Instead
of asking A* to find the shortest path through a grid of millions
of tiny steps, we ask it to find the optimal sequence of large, pre-
calculated, high-speed movements. The Euclidean heuristic
provides the global search strategy, but it is this intelligent,
physics-aware node generation that provides the local, domain-
specific expertise necessary for genuine optimization.

IV. SYSTEM IMPLEMENTATION

A. Implementation Details

1) Programming Languange
The mod is written in Java. Java was chosen as it was the

native language that Minecraft: Java Edition was written in. This
choice provides a direct, performant access to the game’s classes
and method without the need of intermediate compatibility
layers. This is essential for our algorithm, which must perform
thousands of real-time physics calculations and world-state
queries per second without impacting game performance.

2) Modding Toolchain
The Fabric modding toolchain for Minecraft has been

growing swiftly in the last couple of years. This toolchain was
chosen for its lightweight, modular nature compared to the more
heavy Forge toolchain. Fabric provides a clean, stable API that
is well-suited for complex modifications. The primary feature
that it provides is Mixins, which are ways to inject bytecode
without modifying preexisting properties. Its minimal
performance overhead ensures that the pathfinding calculations,
which can be computationally intensive, have the least possible
impact on the game's overall frame rate and responsiveness.

B. User Workflows and Command Structure

Interaction with the pathfinding system is handled through a
simple and intuitive command-based interface. This design
choice allows for easy integration into the existing gameplay
without requiring complex custom UI elements.

• Path Calculation (/pathto): The primary function is
initiated via the /pathto <x> <y> <z> command. This
command is registered using Fabric's
CommandRegistrationCallback API. The command is
designed to parse three integer arguments representing
the target coordinates. Upon execution, the command
retrieves the player's current position as the start node
and the provided coordinates as the goal node, then
triggers the A* pathfinding calculation on a separate
thread to avoid freezing the game client.

• Path Visualization (/stoppath): Once a path is
calculated, a client-side process begins rendering the
path using particles. To provide the user with control
over this visual effect, a second command, /stoppath, is
implemented. This simple command terminates the
particle visualization loop, clearing any existing visual
guides from the screen.

C. Core Implementation

Below are the core implementations that are relevant to this

paper:

1) Node Class
public class Node {
 private BlockPos pos;
 private Node parent;
 private double f;
 private double g;
 private double h;
 private boolean jump;
 private double jumpStrength;
 // Constructor
 public Node(BlockPos pos, Node parent, double f,
double g, double h, boolean jump, double jumpStrength)
{
 this.pos = pos;
 this.parent = parent;
 this.f = f;
 this.g = g;
 this.h = h;
 this.jump = jump;
 this.jumpStrength = jumpStrength;
 }

 public Node(BlockPos pos, Node parent, double g,
double h, boolean jump, double jumpStrength) {
 this.pos = pos;
 this.parent = parent;
 this.g = g;
 this.h = h;
 this.f = g + h;
 this.jump = jump;
 this.jumpStrength = jumpStrength;
 }

 // Getters
 ...
 // Setters
 ...

2) Node Generation
private List<Node> getNeighbors(Node currentNode,
BlockPos goal) {

List<Node> neighbors = new ArrayList<>();

// Walking moves

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

addNeighbor(neighbors, currentNode, goal, new
BlockPos(1, 0, 0), false,
Constants.DEFAULT_WALKING_FORCE);

...

// Jump-up moves

// Short Jumps

addNeighbor(neighbors, currentNode, goal, new
BlockPos(1, 1, 0), true, Constants.FORCE_SHORT_JUMP_B);

...

// Short-Medium Jumps

addNeighbor(neighbors, currentNode, goal, new
BlockPos(2, 1, 0), true, Constants.FORCE_SHORT_JUMP_A);

...

// Medium Jumps

addNeighbor(neighbors, currentNode, goal, new
BlockPos(2, 1, 2), true,
Constants.FORCE_MEDIUM_JUMP_B);

...

// Long Jumps

addNeighbor(neighbors, currentNode, goal, new
BlockPos(3, 1, 1), true, Constants.FORCE_LONG_JUMP_B);

...

// Very Long Jump-Up

addNeighbor(neighbors, currentNode, goal, new
BlockPos(4, 1, 2), true, Constants.FORCE_LONG_JUMP_A);

...

// Falling moves

addFallingNeighbors(neighbors, currentNode, goal);

// Sprint-jump moves

// Long-jump

addNeighbor(neighbors, currentNode, goal, new
BlockPos(5, 0, 0), true, Constants.FORCE_LONG_JUMP_A);

...

// Medium-jump

addNeighbor(neighbors, currentNode, goal, new
BlockPos(4, 0, 0), true,
Constants.FORCE_MEDIUM_JUMP_A);

...

// Short-jump

addNeighbor(neighbors, currentNode, goal, new
BlockPos(3, 0, 0), true, Constants.FORCE_SHORT_JUMP_A);

 ...

return neighbors;

}

3) A* Search Algorithm
public PathfindingResult findPath(BlockPos startPos,
BlockPos endPos) {

PriorityQueue<Node> openSet = new
PriorityQueue<>(Comparator.comparing(Node::getF));

Set<BlockPos> closedSet = new HashSet<>();

Node startNode = new Node(startPos, null, 0,
MovementUtils.getEuclideanDistance(startPos, endPos),
false, 0);

openSet.add(startNode);

long startTime = System.currentTimeMillis();

while (!openSet.isEmpty()) {

 if (System.currentTimeMillis() - startTime >
Constants.PATHFINDING_TIMEOUT_MS) {

 System.out.println("Pathfinding took
too long, timed out!");

 return new PathfindingResult(null,
closedSet.size());

 }

 Node currentNode = openSet.poll();

 if
(currentNode.getPos().isWithinDistance(endPos, 2.0)) {

 List<Node> path =
reconstructPath(currentNode);

 return new PathfindingResult(path,
closedSet.size());

 }

 closedSet.add(currentNode.getPos());

 for (Node neighborNode :
getNeighbors(currentNode, endPos)) {

 if
(closedSet.contains(neighborNode.getPos())) {

 continue;

 }

 Node existingNode =
openSet.stream().filter(n ->
n.getPos().equals(neighborNode.getPos())).findFirst().o
rElse(null);

 if (existingNode == null ||
neighborNode.getG() < existingNode.getG()) {

 if (existingNode != null) {
 openSet.remove(existingNode);

 }

 openSet.add(neighborNode);

 }

 }

}

return new PathfindingResult(null,
closedSet.size()); // No path found

}

V. RESULT AND ANALYSIS

A. Experimental Setup

To ensure a rigorous and reproducible evaluation, a suite of
standardized test cases was designed. All tests were conducted

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

on Minecraft: Java Edition version 1.21.5, using the specific
world seed 8558294790622361916 to control for environmental
variables. The scenarios were chosen to test the algorithm's
performance against varying levels of distance, terrain
complexity, and environmental density.

B. Performance Metric

The performance of the pathfinding mod was evaluated
using the following metrics:

• Path Length: The total number of nodes
(blocks/waypoints) in the final, generated path.

• Nodes Expanded: The total number of nodes retrieved
from the Open Set and evaluated by the algorithm. This
is a direct measure of the size of the search space
explored and indicates the algorithm's computational
effort.

• Calculation Time (ms): The wall-clock time from the
moment the pathfinding request is initiated to the
moment the complete path is returned.

C. Results

After conducting the test and compiling the results, below
the results from the five test scenarios are presented in Table 5.1
as such:

Test Dimension Scenario Node
Count

Node
Expanded

Time
(ms)

1. Overworld Hilly
Terrain

25 355 5753

2. Overworld Flat
Terrain

18 216 9138

3. Nether Dangerous
Terrain

19 127 1781

4. Nether Fortress
Navigation

22 157 2642

5. Overworld Stronghold
Navigation

31 418 3993

Fig. 5.1. Test Results

Source: Author

Fig. 5.2. Test Images

Source: Author

D. Analysis

The collected data provides several key insights into the
algorithm's performance characteristics. The most intuitive
correlation is between environmental complexity and
computational effort. Test 1 (Overworld Hilly) and Test 5
(Overworld Stronghold), which feature significant verticality
and cluttered, enclosed spaces respectively, required the
algorithm to expand a large number of nodes (355 and 418)
relative to the final path length. This is expected behavior, as
complex terrain forces the A* search to explore many
suboptimal branches before converging on the best route.

In contrast, the Nether-based scenarios (Test 3 and Test 4)
were computationally very efficient, with the lowest number of
expanded nodes and the fastest calculation times. This is likely
due to the nature of Nether terrain, which, while dangerous,
often features large open caverns and fewer small, fiddly
obstacles than a forested Overworld biome. The pathfinding in
these relatively open spaces is more direct, allowing the heuristic
to guide the search more effectively.

A notable anomaly is Test 2 (Overworld Flat). Despite
having the simplest terrain, the lowest path length, and a low
number of expanded nodes, it recorded the longest calculation
time (9138 ms). This suggests that factors outside of the core
algorithm's complexity, such as the overhead of loading new
world chunks over a longer distance, can have a significant
impact on real-world performance. The path may be simple to
calculate, but if the necessary world data is not readily available
in memory, the process will be bottlenecked by I/O operations.

Overall, the results confirm that the physics-aware node
generation is effective at finding short, coherent paths through
complex 3D environments. However, the performance is clearly
dependent on both the local complexity of the search space and
larger game engine factors like chunk loading.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

VI. CONCLUSION

The research successfully demonstrates that the A* search
algorithm, when coupled with a highly specialized, physics-
aware graph representation, can be applied within the game's
complex, procedurally generated 3D environment to compute
and visualize efficient paths in near real-time. The development
of a functional Fabric mod serves as a concrete proof-of-
concept, and its performance was quantitatively analyzed across
a range of scenarios, confirming its viability as a tool for route
optimization. There are a couple of important things that can be
noted:

A. Limitations

Despite its successes, this work has several key limitations
that must be acknowledged. These limitations stem from the
simplifications made to render the problem computationally
tractable and provide a clear baseline for analysis.

• Heuristic Simplification: The core limitation is the use
of a purely geometric Euclidean distance heuristic. As
demonstrated in the analysis, the shortest path is not
always the fastest path. The current system does not
account for variable traversal costs associated with
different terrain types, the significant time penalty of
mining through obstacles, or the ability of a player to
place blocks to create bridges and shortcuts. The
resulting paths are optimal in distance, but may be
suboptimal in time.

• Static Pathing: The algorithm generates a single, static
path based on the world state at the moment of
calculation. Minecraft is a highly dynamic environment
where obstacles like mobs are in constant motion and
the player continuously alters the terrain. A path that is
valid at one moment can become blocked or suboptimal
in the next. The lack of a dynamic re-planning
mechanism limits the tool's utility in a live, interactive
gameplay session.

• Abstract Path Representation: Finally, the tool's output
is purely representational, not prescriptive. It displays a
visual line indicating the optimal sequence of locations
but does not translate this route into the specific, timed
sequence of player inputs required to follow it. For
instance, while the path may incorporate a complex
sprint-jump between two distant nodes, the visualizer
simply connects these points; it offers no guidance on
the required run-up, the precise timing of the jump, or
the necessary mouse movement. This leaves the
complex mechanical execution entirely to the player's
own skill and knowledge, creating a potential gap
between the theoretically optimal path and a player's
ability to implement it.

B. Potential For Improvements

The limitations identified above point directly to several
promising avenues for future research. These extensions would
build upon the foundation established in this paper to create a
more powerful and practical speedrunning assistance tool.

1. Implementing Dynamic Re-planning: To address the
issue of static pathing, a re-planning module should be
integrated. This could take several forms, such as "path
splicing," where the algorithm periodically re-
calculates the next few steps of the path to navigate
around immediate, unforeseen obstacles. Another
approach would be event-triggered re-planning, where
the system listens for game events and automatically
triggers a recalculation.

2. Goal-Oriented Pathfinding: The system could be
expanded from simple point-to-point navigation to a
more intelligent, goal-oriented planner. Instead of
requiring the user to provide exact coordinates for an
endpoint, a future version could accept high-level
commands like "find nearest Bastion." This would
require the algorithm to first perform a search for a
valid goal state within a given radius before calculating
the path to it.

3. Automated Path Traversal: To bridge the gap between
path visualization and practical execution, a future
development would be the creation of an automated
traversal bot. This system would consume the
generated path and translate each node into the precise
sequence of inputs required to navigate it. By
leveraging the movement data already stored in each
path node, the bot could perform complex maneuvers
with a high degree of precision, effectively
transforming the tool from a navigational guide into an
autonomous agent.

APPENDIX

Full source code of the program is available at:

https://github.com/DanielDPW/Makalah_IF2211_Stima

Video link of the demonstration is available at:

https://youtu.be/RJbxJmaREh8

ACKNOWLEDGMENT

The author expresses gratitude to lecturer Dr. Rinaldi Munir,

M. T. as the lecturer of the IF2211 Algorithm Strategies course,

for his guidance and resources provided in finishing this paper.

Special thanks are due to friends and fellow students of the

Algorithm Strategies class. The insightful discussions,

collaborative problem-solving and constant encouragement

made the challenges of this project much more manageable.

The author would also like to acknowledge the wider

community whose work made this research possible: Mojang

Studios for developing Minecraft, a rich and complex

environment for algorithmic exploration and the developers of

the Fabric modding toolchain for creating powerful and

accessible tools.

Finally, the author wishes to express their deepest

appreciation to their family for their unconditional love,

patience, and unwavering support throughout the entire process

of writing this paper.

https://github.com/DanielDPW/Makalah_IF2211_Stima
https://youtu.be/RJbxJmaREh8

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

REFERENCES

[1] R. Munir. “Penentuan Rute Bagian 1: BFS, DFS, UCS, Greedy Best First
Search”, 2025.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/21-
Route-Planning-(2025)-Bagian1.pdf

[2] R. Munir. “Penentuan Rute Bagian 2: Algoritma A*”, 2025.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/22-
Route-Planning-(2025)-Bagian2.pdf

[3] Fabric Documentation, https://docs.fabricmc.net/

[4] Minecraft Wiki, https://minecraft.wiki/

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini

adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari

makalah orang lain, dan bukan plagiasi.

Bandung, 24 Juni 2025

Daniel Pedrosa Wu (13523099)

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/21-Route-Planning-(2025)-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/21-Route-Planning-(2025)-Bagian1.pdf
https://docs.fabricmc.net/
https://minecraft.wiki/

